zlatá spirála

Pokladem každého života je jeho rozvoj, a to systematicky, rovnoměrně a ve všech směrech současně.

viz Logaritmická spirála = rovinná křivka (spirála), jejíž poloměr roste exponenciálně s velikostí úhlu.

 Zlatý řez

  Zlatý obdélník

Jako zlatý řez (latinsky sectio aurea) se označuje poměr o hodnotě přibližně 1,618. V umění a fotografii je pokládán za ideální proporci mezi různými délkami. Zlatý řez vznikne rozdělením úsečky na dvě části tak, že poměr větší části k menší je stejný jako poměr celé úsečky k větší části. Hodnota tohoto poměru je rovna iracionálnímu číslu          \varphi ={1+{\sqrt 5} \over 2}\approx 1{,}618\ 033\ 988\ 749\ 894\ 848\,\ldots

Již nejméně od renesance využívají zlatý řez umělci ve svých dílech, zejména ve formě tzv. zlatého obdélníku, ve kterém se zlatý řez vyskytuje jako poměr stran. Zlatý řez prý totiž působí esteticky příznivým dojmem; poměr zlatého řezu lze také pozorovat v přírodě.

Zlatý řez se vyskytuje v přírodě ve formě Fibonacciho posloupnosti. Listy rostlin, pokud vyrůstají jednotlivě, jsou na větvičkách rozloženy tak, že každý list vyrůstá nad předchozím listem více či méně posunut o určitý úhel. V dolní části stonku jsou listy starší a větší, u vrcholu mladší a menší. Všechny listy jsou stejnoměrně osvětlovány Sluncem, menší nestíní větším, které mají delší řapíky. Dalším projevem zlatého řezu je uspořádání semen slunečnice nebo smrkové šišky, ve kterých jsou šupiny rozmístěny jako spirála, nebo točité schody. Toto rozmístění je také velice dobře vidět u ananasu. Dalším projevem zlatého řezu v přírodě je logaritmická spirála, která nemění tvar a roste stejně do délky i do šířky. Jejím projevem je růst neživých částí živého tvora. Můžou to být vlasy, nehty, zobáky, zuby, rohy, parohy nebo schránky měkkýšů. Čím více se její zakřivení liší od zakřivení kružnice, tím méně připomíná spirálu. Mírně ohnutý sloní kel i hustě točená ulitka plže jsou v tomto ohledu příbuzné. Turovitým kopytníkům, mezi které patří i náš hovězí dobytek a ovce, rostou rohy do spirály. Nebývá to vždy na první pohled zřetelné, neboť obyčejně jsou jen částí jednoho závitu spirály, ale některé jsou přímo ukázkou prostorové logaritmické spirály, např. africký kudu. Spirálu najdeme v klu slona nebo zubu narvala. Narval má zubů velmi málo, pouze v horní čelisti. Samci jeden z těchto zubů naroste do obrovských rozměrů. Je to vždy levý zub a na povrchu je spirálovitá struktura. Na lidském těle lze zlatý řez pozorovat tehdy, jestliže se výška postavy (od temene hlavy) dělí vzdáleností pupku od země. Normálně vyvinutá postava dospělého člověka udává číslo 1,618; mohou samozřejmě být i malé odchylky – záleží na přesnosti měření. Schránka hlavonožce loděnky je ilustrací logaritmické spirály. Nejlépe se o tom přesvědčíme na průřezu ulity. Přepážky, které ji rozdělují na komůrky, svědčí o tom, jak loděnka rostla. Logaritmická spirála je příznačná pro neživé části živého organismu ulity plžů. Také hmyz se ke světlu blíží po logaritmické spirále. Pohybuje se tak, aby světlo viděl stále pod stejným úhlem.

 

 

Zlatý řez v pětiúhelníku 

Zlatý řez má mnoho zajímavých vlastností. Například se vyskytuje v pravidelném pětiúhelníku nebo je to limita poměru mezi dvěma následujícími členy Fibonacciho posloupnosti. Pentagram (penta – pět, grame – čára) je pěticípá hvězda nakreslená jedním tahem, která má sice chybu na kráse, neboť ji křižují čáry a oddělují ramena od středu, ale vzdálenosti mezi vrcholy jsou v poměru zlatého řezu. Pentagram měli Řekové ve velké úctě, neboť názorně představoval to, co neuměli vyjádřit číselným poměrem. Zákonitost, která se v pentagramu ukrývala, z něj učinila tajemný symbol dokonalosti vesmíru.

Obdélník, jehož poměr stran odpovídá zlatému řezu, lze rozdělit na čtverec a obdélník, jehož poměr stran opět odpovídá zlatému řezu.

 Konstrukce zlatého řezu – Bodem B úsečky AB o délce a sestrojíme kolmici BC o délce ½ a.

  1. Spojíme bod A s bodem C.
  2. Sestrojíme kružnici se středem C a poloměrem ½ a.
  3. Průnikem kružnice a úsečky AC je bod D.
  4. Naneseme úsečku AD na úsečku AB z bodu A.
  5. Bod E, který dostaneme, rozdělí úsečku AB zlatým řezem.

Alternativní konstrukce

  1. Mějme čtverec ABCD a bod A‘, který stranu AB rozděluje na polovinu. Uvažujme i polopřímku AB.
  2. Z bodu A‘ sestrojíme kružnici tak, aby procházela bodem C. Kružnice nám protne polopřímku v bodě E.
  3. Vzdálenosti AE a AD jsou v poměru zlatého řezu.
  4. Jako bod F si označíme koncový bod vektoru AD aplikovaného z bodu E.
  5. Obdélník AEFD má strany v poměru zlatého řezu, stejně jako obdélník BEFC.

 

Komentáře jsou uzavřeny.